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An example of non-uniqueness in the two-dimensional, linear water wave problem 
is obtained by constructing a potential which does not radiate any waves to infinity 
and whose streamline pattern represents the flow around two surface-piercing bodies. 
The potential is constructed from two wave sources which are positioned in the free 
surface in such a way that the waves radiated from each source cancel at infinity. A 
numerical calculation of the streamline pattern indicates that there are at least two 
streamlines which represent surface-piercing bodies, each of which encloses a source 
point. A proof of the existence of these lines is then given. 

1. Introduction 
One of the classic problems in the study of the interaction of water waves with 

obstacles using linear theory is to determine whether the problem posed in the 
frequency domain has a unique solution at all frequencies. John (1950) established 
uniqueness for a class of single, surface-piercing bodies which have the property that 
any vertical line emanating from the free surface does not intersect the body. His result 
can be immediately generalized to include extra bodies or variations in the bottom 
topography, provided that they can all be contained below the original body. However, 
the result does not cover all bodies and, in particular, it fails for submerged bodies. 

A general result for submerged bodies has not been proved and indeed some of 
the earliest work concentrated on specific geometries. Ursell (1950) established the 
uniqueness of the solution for a circular cylinder which is submerged in fluid of 
infinite depth, by using the theory of complex variables. Uniqueness has also been 
established for the axisymmetric problem for a submerged sphere by Livchitz (1974). 
However, the methods used in these cases are tailored to specific geometries and it is 
not easy to see how they can be extended to arbitrary body shapes. Kreisel (1949) used 
complex variable theory to look at two-dimensional fluid layers of variable depth. By 
mapping an infinite strip onto the fluid domain, he established uniqueness for a class 
of layers which in some sense are close to the infinite strip. Other work on fluid of 
variable depth is given in Vainberg & Maz’ja (1973). They established uniqueness for 
topographies which satisfy certain geometric conditions but their criteria do not cover 
all fluid layers. Further conditions were given by Fitzgerald & Grimshaw (1979) who 
extended the results of Kreisel (1949) to two-dimensional layers which have different 
depths at either infinity. 

A breakthrough for submerged, compact bodies was made by Maz’ja (1978). He 
derived a very general vector identity involving the velocity potential and its deriva- 
tives and established geometric restrictions on the bodies under which the identity 
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could be written as a sum of non-negative integrals equalling zero. This led to 
a proof that, for such bodies, any velocity potential which satisfies homogeneous 
boundary conditions must be identically equal to zero throughout the fluid. His 
work was amplified and extended by Hulme (1984) who produced specific examples 
of bodies which satisfy Maz’ja’s criterion for uniqueness. The number of geometries 
for which uniqueness can be proved using this method has since been extended by 
Weck (1990) and Kuznetsov (1991). At about the same time that Hulme publicized 
the work of Maz’ja, Simon & Ursell (1984) generalized the result of John (1950) to 
prove uniqueness for two-dimensional bodies which are contained between lines which 
emanate from the free surface at a certain angle. In particular, they proved that in 
infinite depth, if one or more submerged bodies are contained between two lines 
which intersect at a point on the free surface and are inclined at angles +n/4 to 
the horizontal, then the solution is unique. In general, their results were sometimes 
stronger and sometimes weaker than the ones described by Hulme (1984) but neither 
method produces a general proof of uniqueness. 

Results concerning more general classes of bodies are available but they are 
frequency dependent. Beale (1977) showed that for a floating body in an ocean of 
uniform depth, the solution is unique except possibly for a discrete set of frequencies. 
This work was extended by Vullierme-Ledard (1983) who also showed that for bodies 
submerged in fluid of infinite depth, neither zero frequency nor infinite frequency are 
accumulation points. Her results were confirmed by Simon & Ursell (1984) who also 
generated bounds for the frequency parameter for which non-uniqueness could occur. 
Further extensions of the work of Beale (1977) were made by Athanassoulis (1987) 
and Athanassoulis & Politis (1990). 

Much less work has been done on establishing uniqueness for multiple surface- 
piercing bodies in two dimensions, partly because of the difficulty of dealing with 
the portions of the free surface which are trapped between the bodies. To the 
author’s knowledge, the only explicit solution which exists for two surface-piercing 
bodies is that derived by Levine & Rodemich (1958) for a pair of vertical barriers. 
Kuznetsov (1988) and Kuznetsov & Simon (1995) have generated some frequency- 
dependent results for two surface-piercing cylinders in two dimensions. By transform- 
ing to bipolar coordinates, they show that the solution is unique for all frequencies 
below a value which depends on the geometry of the bodies. However, they are 
unable to prove uniqueness for all bodies at all frequencies and, in fact, the purpose 
of this work is to construct an explicit example of two surface-piercing bodies for 
which the potential is non-unique at a specific frequency. 

A statement of the problem is given in $2. The question of uniqueness can be 
reduced to the problem of showing whether a certain homogeneous boundary value 
problem has only the trivial solution 4 3 0. An example of non-uniqueness is gener- 
ated in $ 3  by constructing a potential which does not radiate any waves to infinity 
and then interpreting two of the streamlines as body contours. This approach has 
been used before by Bessho (1965) and more recently by Kyozuka & Yoshida (1981) 
to generate bodies which have zero radiation damping at isolated frequencies. Here, 
the potential is constructed from two wave sources which are positioned in such 
a way that the waves emanating from each cancel at infinity. A similar wave-free 
potential was constructed by Morris (1974) who looked at configurations of sources 
placed above a sloping beach which do not radiate waves to infinity. The streamline 
pattern is generated numerically and indicates that at least two of the streamlines 
represent surface-piercing bodies, each of which contains a source point. A proof that 
such streamlines exist is then given in $4. 
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2. Statement of the problem 
The uniqueness problem in linear water waves is formulated by considering the 

irrotational motion of an inviscid and incompressible fluid. The wave and body 
motions are assumed to be small compared to the wavelength and so the free surface 
and body boundary conditions are linearized about their mean positions. In two 
dimensions, a time-harmonic solution for the velocity potential is sought in the form 
Re{4(x,y)e-iof), where o is the angular frequency and x and y are rectangular 
Cartesian coordinates with the origin in the mean free surface and the y-axis pointing 
vertically downwards. If 41(x, y) and 42(x, y)  are two potentials which satisfy the same 
forced boundary value problem, then the difference potential 4 = 41 - 4 2  satisfies 

v24 = 0 (2.1) 

in the fluid with the free surface boundary condition 

(2.2) 

where K = 0 2 / g  and g is the acceleration due to gravity. On any body surface 

8 4  - =o, 
an 

where d/an  is the derivative in a direction normal to the body. Under the assumption 
that the fluid has infinite depth 

V4-+0 as y-+co. (2.4) 

In addition, 4 satisfies the radiation condition 

(2.5) 

An application of Green’s theorem to 4 and its complex conjugate shows that this 
homogeneous problem for 4 cannot produce any outgoing waves and so the radiation 
condition (2.5) and the large-depth condition (2.4) may be replaced by 

4 - + 0  as x 2 + y 2 - + c o ,  y 3 0 .  (2.6) 

More precisely, Ursell (1950) showed that if there are no waves at infinity, the potential 
may be expanded in terms of wave-free potentials and, in general, the leading-order 
behaviour of 4 as x2 + y2 -+ 00 is given by a multiple of the lowest symmetric 
wave-free potential xl, which is defined by 

x2 + y2 # 0. y2 - x2 KY 
(x2 + y2)2 

+- 
x2 + y2’ 

x1 = 

The problem of establishing uniqueness is equivalent to showing that the above 
boundary value problem only has the trivial solution 4 = 0, where 4 is assumed 
to have continuous second derivatives in the fluid and to be continuous onto the 
boundary. The solution of a forced problem is therefore non-unique at a particular 
frequency if a non-zero solution of the homogeneous boundary value problem is 
found. In the next section, such a solution is constructed. 
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3. Construction of a non-zero solution of the homogeneous boundary value 
problem 

Rather than consider a specific geometry and look for frequencies at which non- 
trivial solutions occur, an example of non-uniqueness is derived by constructing a 
potential which decays appropriately at infinity and interpreting some of the stream- 
lines as body contours. This is similar to the approach taken by Bessho (1965) and 
Kyozuka & Yoshida (1981) who looked for bodies for which zero damping occurs at 
certain frequencies. 

The potential is constructed from a wave source (see Ursell 1949) placed at the 
point (a, 0) and another source of equal strength placed at the point (-a, 0), where 
K a  = n/2. Thus, 

e-ky 

4 = 4" e-kycosk(x-a)dk+ 
0 k - K  1 k - K  

___ cos k(x + a) dk, (3.1) 

where the contour of integration passes below the poles at k = K in both integrals. 
This particular combination of sources is chosen because the waves radiated from 
each source cancel each other out as 1x1 -+ 00 and so q5 satisfies (2.6). The potential 
represents a solution to the homogeneous problem for two surface-piercing bodies if 
at least one of the streamlines of the flow connects the free surface on either side 
of a source point and another streamline similarly surrounds the other source point. 
If they exist, such contours may be interpreted as the boundaries of bodies and the 
potential then has no singularities in the fluid domain because the source points are 
contained within the interior of the bodies. Physically, the potential is suggestive of 
a trapped oscillation because, although the waves emanating from the sources cancel 
as 1x1 -+ a, they reinforce between the sources to produce a localized standing wave. 
(This argument should only be used as a guide to the behaviour of the flow field, 
however, because it relies on using the far-field representation of the source potentials 
in the region between the sources, which is not strictly valid.) 

An alternative representation for 4 in terms of the exponential integral may be 
derived which is more convenient for both analytic and numerical work. By deforming 
the contour of integration into the upper or lower half-plane, depending on the sign 
of X ,  it may be shown that 

e-Ky+xX(-ni + El(--Ky + X X ) ) ,  X < 0, y 2 0, 
X = 0, y > 0, 
X > 0, y 2 0, 

f "  e;k:+r -dk={ -e-KYEi(Ky), (3.2) 

where the integral on the left-hand side of (3.2) is interpreted in a principal value 
sense. The functions El and Ei are the forms of the exponential integral defined by 
Abramowitz & Stegun (1965, 5.1.1-2) as 

(xi + El(-Ky + X X ) ) ,  e-K~+iKX 

and 

Ei(Y) = -  -dt, Y > O .  f_: e: (3.4) 

(Despite its appearance, the representation on the right-hand side of (3.2) is continuous 
on the line X = 0, y > 0 because of the jump in E1(--Ky + X X )  across this line.) 
Since K a  = n/2, the contributions to the integrals in (3.1) from the contours below 
the poles cancel and so the contour integrals may be replaced by principal value 
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FIGURE 1. The streamline pattern for two wave sources, a non-dimensional distance K apart. 

integrals. Once this has been done, it is clear that 4 is purely real and so the real part 
of (3.2) may be substituted into (3.1) to give, after some rearrangement, 

4 = Re[e-KY+‘Kx(nsgn(Kx - 4 2 )  - mgn(Kx + n/2) 
+iEl(-Ky + iKx + in/2) - iEl(-Ky + X x  - in/2))], Kx # +n/2 (3.5) 

and 4 is continuous on K x  = f 4 2 ,  y > 0. 

given by 
The harmonic conjugate to 4, hereafter referred to as the stream function y ,  is 

m e-kY 
sin k(x - a )  dk + $ k - ~  sin k(x + a )  dk. (3.6) 

The contribution to the integrals in (3.6) from the contours below the poles cancel 
and so the stream function is real and may be written in terms of the exponential 
integral as 

y = Im[e-Ky+xx(nsgn(Kx - n/2) - nsgn(Kx + n/2) 
+iEI(-Ky + iKx + in/2) - iEI(-Ky + iKx - iz/2))], K x  # + _ ~ / 2  (3.7) 

and y is continuous on K x  = +_n/2, y > 0. The streamlines of the flow (lines 
on which y = const.) represent impenetrable barriers in the fluid and may be 
interpreted as the boundaries of bodies. A numerical calculation of the streamline 
pattern, using Mathematicu, is given in figure 1. The x- and y-coordinates have been 
non-dimensionalized by introducing the new variables x’ = Kx and y’ = K y  and so 
the source points are at (+_x/2,0). In order to illustrate exactly how the streamlines 
intersect the free surface, the continuation of the streamline pattern into the region 
y’ c: 0 is given. No physical meaning is attributed to the streamlines in this region and, 
indeed, the stream function has branch cuts on the lines x’ = +n/2, y’ < 0. However, 
from figure 1, it is clear that there are some streamlines which connect the free surface 
on either side of each source point and which may be interpreted as surface-piercing 
bodies. Not all streamlines may be used, as some go into a source point from below 
the free surface, but an illustration is given in figure 2 of two surface-piercing bodies 
which are generated from parts of the streamlines on which y = +1. As the spatial 
variables have been non-dimensionalized by using the wavenumber K ,  the actual 
position of the bodies changes as K varies. However, this is to be expected because 
for a given geometry non-uniqueness can only occur at isolated frequencies. 
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Once two streamlines have been interpreted as bodies, the remaining streamlines 
in the fluid domain represent lines tangent to the fluid velocity. Thus, from figure 1, 
the potential may be interpreted as representing a simple heaving of the fluid in 
between the obstacles. In the terminology of the theory of trapped modes, this would 
be deemed to be the lowest symmetric mode which may occur between the bodies. 
Numerical experimentation by colleagues at Bristol University shows that by putting 
the sources at other odd multiples of n / K  apart, symmetric modes with more nodal 
lines are generated. However, this procedure generates new body contours and it 
has not yet been established whether, for a given pair of bodies, an infinite sequence 
of symmetric modes is possible. Antisymmetric modes between bodies have also be 
generated numerically by putting a wave source and a wave sink of equal strength 
an even multiple of n / K  apart. 

In the next section, a proof is given that the potential in (3.1) generates at least 
two streamlines which may be interpreted as two surface-piercing bodies. 

4. Proof of the existence of a pair of surface-piercing bodies for which 
non-uniqueness can occur 

The purpose of this section is to show that the potential given in (3.1) represents a 
solution to the boundary value problem stated in $2, for two surface-piercing bodies. 
The method used is to show that a streamline emanates from the free surface on the 
right of the source point at x = a, passes through the fluid below the source and 
re-enters the free surface on the left of the source point in the region 0 < x < a and 
thus removes the source point from the fluid. As the potential is symmetric about 
x = 0, the streamline pattern is also symmetric and so, once the first streamline is 
shown to exist, a second streamline must exist around the source point at (-a,O). 

From (3.7), the value of the stream function on the free surface in the region x > a, 
where K a  = n/2, is given by 

(4.1) 

When the argument of the exponential integral is purely imaginary, it is convenient 
to express it in terms of the Sine and Cosine integrals. A rearrangement of (5.2.21) 
and (5.2.23) in Abramowitz & Stegun (1965) gives 

v(x,O) = Im [iexx(E1(Xx + in/2) - El(iKx - in/2))] , x > a. 

El(iX) = i [Si(X) - n/2] - Ci(X), X > 0 (4.2) 
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(4.3) 

and 

where Si(X) and Ci(X) are the Sine and Cosine integral respectively, defined by 
EI(-iX) = -i [Si(X) - n/2] - Ci(X), X > 0 

Si(X) = lx dt 

and 

Ci(X) = -La 7 dt. 

(4.4) 

(4.5) 

Both of the arguments of the exponential integrals in (4.1) are positive imaginary for 
x > a and so substitution of (4.2) into (4.1) yields, after some manipulation, 

y ( x ,  0) = [Si(Kx - n/2) - Si(Kx + n/2)] sinKx 
+[Ci(Kx - n/2) - Ci(Kx + n/2)] cos Kx,  x > a. (4.6) 

In order to consider a streamline emanating from this part of the free surface it is first 
necessary to determine the range of values which y takes in this region. There is a 
logarithmic singularity in Ci(X) at X = 0 but as cos K x  = - (Kx - i n )  + O((Kx - in)3) 
as Kx + i n  and Si(0) = 0, 

y(x,O) -+ -Si(n) = -1.852 as x -, a+. (4.7) 

y(x,O) + 0 as x + co. (4.8) 

Both Si(X) and Ci(X) are bounded as X --t co and so 

Thus y(x,O) varies from -Si(n) at x = a+ to 0 as x -, co. Differentiation of y using 
the representation in (4.6) yields, after some manipulation, 

x > a, (4.9) 

where g(X) is the auxiliary function defined by Abramowitz & Stegun (1965, 5.2.7 
and 5.2.13) as 

g(X) = -Ci(X)cosX - (Si(X) - i n )  sinX = lm dt, X > 0. (4.10) 

Clearly, g(X) > 0 for X > 0 and so from (4.9), dy/dx(x,O) > 0 for x > a and the 
stream function increases strictly monotonically from -Si(n) to 0 as x varies from a+ 
to infinity. 

The value of the stream function at the point (xo,O), where a < x g  < 00, is denoted 
by y = yo, where -Si(n) < yo < 0. This is not an isolated point at which y = yo as 
can be demonstrated by considering the variation of y along a short line which joins 
the point (xo( 1 - c) ,  0) to the point (xg( 1 + e) ,  0) and passes through the interior of the 
fluid beneath the point (xo,O), where 0 < e<.l and xo(l - 6 )  > a. As v(x,O) is strictly 
monotonically increasing in a < x < co and y(x ,y )  is continuous in y 2 0 (except at 
the source points) y must vary continuously along the line from a value y < yo at 
(xo(1 - c),O) to a value y > yo at (xo(1 + c),O). Thus, 1c, must take the value yo on 
the line at some point in the interior of the fluid. As e and the length of the line may 
be made arbitrarily small, this means that there are points in the interior of the fluid, 
arbitrarily close to ( x g , O ) ,  at which y = yo and so a streamline on which y = yo 
emanates from (x0,O) into the fluid. 
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A similar argument may be used to show that the streamline cannot end in the 
fluid. The contrary is supposed, namely that the line terminates in the fluid. The 
mean value theorem for harmonic functions is applied to y on a circle of radius 
6, where 0 < 641, centred at the end of the line. The theorem implies that either 
y = yo everywhere on the circle or y takes values both greater than yo and less than 
yo and thus, by continuity, takes the value yo at least twice on the circle. In either 
case, there are at least two points on the circle at which y = yo. One point is on the 
original streamline but, as 6 can be made arbitrarily small, the other point forms a 
continuation of the streamline, which contradicts the supposition that the streamline 
terminates. 

Thus, the streamline must either go off to infinity or re-enter the free surface 
(possibly at one of the source points). The asymptotic form of the exponential 
integral is given by Abramowitz & Stegun (1965, 5.1.51) as 

(4.11) 
3n 

E l ( z ) = c  Z [ l + O ( f ) ]  as ( z / - + c o ,  largzl<- 2 

and so, from the definition of y in (3.7), 

y ( x , y ) + ~  as x 2 + y 2 + c o ,  y 2 0  (4.12) 

and so a streamline on which y = yo < 0 cannot go off to infinity. The streamline 
must, therefore, re-enter the free surface. It cannot re-enter the free surface at the 
point (xo,O) at which it left because if it did, the streamline would be closed and an 
application of the maximum principle for harmonic functions would yield that y = yo 
everywhere in the region contained within that streamline. Analytic continuation of 
harmonic functions would then mean that y = yo everywhere in the fluid (except 
at the source points) which violates the definition of y. Furthermore, the streamline 
cannot re-enter the free surface at any other point in the range a < x < co because 
y(x,O) is strictly monotonically increasing in this region and so there is only one 
point, namely (xo,O), at which y = yo. 

The small-argument expansion of El(z) is given by Abramowitz & Stegun (1965, 
5.1.11) as 

El(z) = --y - lnz + O(z)  as Jz) + 0, JargzJ < x, (4.13) 

where y is Euler’s constant. Thus, from the definition of y in (3.7) and the relationship 
between the exponential integral and the Sine and Cosine integrals in (4.2), 

y(x,y) =a-Si (n)+o( l )  as ( x - u ) ~ + ~ ~ + o ,  y 2 0 ,  (4.14) 

where GI =arg(Kx - n/2 - 1Ky) and CI varies in the interior of the fluid from -n on 
y = 0, x < a to 0 on y = 0, x > a. Thus the values of the stream function on 
the streamlines which enter the source point at (a,O) from the region y >, 0 are in 
the range -Si(x) - 7[: d y d -Si(n) and so the streamline on which y = yo where 
-Si(n) < yo < 0 cannot go into the source point. 

From (3.6) the stream function is antisymmetric about the line x = 0 and so y = 0 
on this line and the streamline on which y = yo < 0 cannot cross the line x = 0. The 
only remaining possibility is that the streamline on which y = yo re-enters the free 
surface in the region 0 < x < a. Because the stream function is antisymmetric, = 0 
at the point (0,O) and from the behaviour of stream function near the source point 
given in (4.14), y(x,O) -+ -Si(n) -x as x --+ a-. As y(x,O) is continuous in 0 < x < a, 
it must take all values in the range -Si(n) - x < y < 0 at least once. Thus, there is 
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at least one point in this range at which y = yo and the streamline re-enters the free 
surface at such a point. 

It has been demonstrated, therefore, that there exists at least one streamline which 
connects the free surface on either side of the source point at (a,O) and removes it 
from the fluid domain. By symmetry, the streamline on which y = -yo connects 
the free surface on either side of the source point at (-a,O). These streamlines may 
be interpreted as body boundaries and so the potential given in (3.1) represents a 
trapped mode of oscillation between two surface-piercing bodies. There is, in fact, a 
double infinity of possible pairs of bodies for which this potential represents a trapped 
mode and these bodies are constructed from the streamlines on which y = yo and 
y = -y1, where -Si(x) < yi < 0, i = 0,l. 

5.  Conclusion 
In this work, an example of non-uniqueness in the two-dimensional water wave 

problem has been generated by constructing a potential which does not radiate waves 
to infinity and interpreting two of the streamlines of the flow as body boundaries. 
The potential is constructed from two wave sources which are placed in the free 
surface and separated by a distance of half a wavelength. It has been shown 
both analytically and numerically that this potential represents a trapped mode of 
oscillation between two surface-piercing bodies. Work is currently under way to try 
and determine whether such a mode exists for an arbitrary pair of surface-piercing 
bodies or whether geometric restrictions on the bodies are required. In addition, the 
question of whether a trapped mode can exist at more than one frequency for a given 
pair of bodies is under investigation. Preliminary numerical evidence indicates that it 
is possible to construct bodies for which trapped modes with more nodal lines exist, 
but it is not yet clear whether more than one mode can exist for a given pair of bodies. 
The corresponding three-dimensional problem is being considered by a colleague at 
Loughborough University and the early numerical indications are that it is possible 
to generate a trapped mode of oscillation within a surface-piercing, torus-like body, 
by constructing the potential from a suitably positioned ring source. An attempt to 
prove these numerical results is under way. 

I am indebted to my colleagues at Loughborough University, Bristol University and 
the Institute of Problems of Mechanical Engineering in St. Petersburg for checking 
the numerical results in $ 3  and for their helpful advice about how to prove some of 
the results in $4. 
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